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A channel flow DNS database at Reτ = 590 is used to assess the validity of modelling
the redistribution term in the Reynolds stress transport equations by elliptic relaxation.
The model assumptions are found to be globally consistent with the data. However, the
correlation function between the fluctuating velocity and the Laplacian of the pressure
gradient, which enters the integral equation of the redistribution term, is shown to
be anisotropic. It is elongated in the streamwise direction and strongly asymmetric
in the direction normal to the wall, in contrast to the isotropic, exponential model
representation used in the original elliptic relaxation model. This discrepancy is the
main cause of the slight amplification of the energy redistribution in the log layer
as predicted by the elliptic relaxation equation. New formulations of the model are
proposed in order to correct this spurious behaviour, by accounting for the rapid
variations of the length scale and the asymmetrical shape of the correlation function.
These formulations do not rely on the use of so-called ‘wall echo’ correction terms to
damp the redistribution. The belief that the damping is due to the wall echo effect is
called into question through the present DNS analysis.

1. Introduction
In second-moment closures, one of the most important and difficult tasks is to model

the pressure gradient–velocity correlation in the Reynolds stress transport equations.
Indeed, since the production does not need any modelling at this closure level,
particular attention must be focused on this correlation term and on the dissipation.
In a channel flow (e.g. Mansour, Kim & Moin 1988) the pressure gradient–velocity
correlation, the main effect of which is to redistribute the energy among the Reynolds
stresses (hence called the ‘redistribution term’), is the only source term in the budgets
of the wall-normal and spanwise Reynolds stresses; it balances the production in the
shear stress budget.

Since the pioneering works of Chou (1945) and Rotta (1951), the local approach,
which algebraically relates the unclosed redistribution term to the Reynolds stress
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anisotropy, mean strain, and mean vorticity tensors, has been popular in the turbu-
lence modelling community. All standard models are based on this approach. The
redistribution term is written in an integral form and split into three parts: the rapid,
slow and surface parts. The slow part, which does not involve any mean flow quantity,
is modelled in terms of the Reynolds stress anisotropy. The rapid part is expressed
in terms of products of mean velocity gradients and a fourth-order tensor, based
on the assumption that the mean velocity gradient is locally constant. This quasi-
homogeneous approach has been the starting point of almost all second-moment
closure models. In most of them, linear ones in particular (e.g. Rotta 1951; Naot,
Shavit & Wolfshtein 1973; Launder, Reece & Rodi 1975), and even fully nonlinear
ones (e.g. Fu, Launder & Tselepidakis 1987), the surface part is neglected or modelled
by wall echo terms, as suggested by Gibson & Launder (1978). In others, the influence
of the solid boundary is accounted for through variable coefficients, leading to quasi-
linear models, such as that of Speziale, Sarkar & Gatski (1991). In the recent model
of Craft & Launder (1996), the nonlinear formulation directly includes wall-induced
effects.

However, the validity of the quasi-homogeneous approximation used for the rapid
part is questionable. It assumes that the mean velocity gradient varies sufficiently
slowly to allow it to be taken outside the integral, which is not the case in strongly
inhomogeneous turbulence. Bradshaw, Mansour & Piomelli (1987) used the channel
flow DNS of Mansour et al. (1988) to show that this hypothesis is correct down
to y+ = 40, but totally invalid below this value. Another weakness of the quasi-
homogeneous approach is the loss of the non-local character of the redistribution
term. The integral equation for the latter, which involves two-point correlations
between velocities and the Laplacian of the pressure gradient, shows that it actually
depends on the mean flow and the turbulence state at all points of the domain.
Kim (1989) showed that in a channel, except in the very near-wall region, the
redistribution term takes contributions from all the domain, including the opposite
wall. Furthermore, a number of theoretical studies (e.g. Hunt & Graham 1978) as well
as direct numerical simulations (Perot & Moin 1993) showed that the structures of the
flow, and the associated length scales, are strongly affected by the presence of a solid
boundary even in the absence of mean shear, because of the blocking effect which
is non-local. In particular, the two-point correlations of the wall-normal velocity are,
as shown by Hunt et al. (1989), influenced near the wall by the image eddies. These
non-local effects make the redistribution term difficult, if not impossible, to model in
terms of local variables.

Furthermore, the quasi-homogeneous models cannot in general be integrated down
to solid boundaries without introducing corrections, such as damping functions (there
are exceptions, such as the Craft & Launder 1996 model). Damping functions are
not universal, since they are derived by fitting experimental or DNS results with little
theoretical justification.

In order to avoid such problems, Durbin (1991, 1993) introduced a novel approach.
He proposed modelling directly the two-point correlation in the integral equation
of the redistribution term, using an isotropic, exponential function. A convolution
product is obtained, which can be inverted to give the so-called elliptic relaxation
approach. The redistribution term is no longer given by an algebraic relation, but
rather by a differential equation. The non-local character is preserved through the
elliptic operator (1− L2∇2), and the model can be integrated down to the wall. A
notable feature of this approach is that the source term of the elliptic relaxation
equation can be given by any quasi-homogeneous model. Hence, it enables the
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derivation of models valid down to solid boundaries, from the quasi-homogeneous
models cited above, which have been tested over a wide range of different flows.
Even though some intuitive assumptions have been made, Durbin’s model is based
on a theoretical approach, leading to the hope that it is somewhat universal, unlike
damping functions.

The elliptic relaxation model has led to very encouraging results, especially as
applied to the v2–f (or k–ε–v2) model, which is a version of the full Reynolds
stress model reduced to three transport equations. Successful predictions include, but
are not limited to, flows with adverse pressure gradient and around bluff bodies
(Durbin 1995), three-dimensional boundary layers (Parneix, Durbin & Behnia 1998),
aerodynamics (Lien, Durbin & Parneix 1997), and heat transfer (Behnia, Parneix &
Durbin 1998; Manceau, Parneix & Laurence 2000).

Despite the remarkable success, room for improving the elliptic relaxation model
exists. Many of the underlying model assumptions, introduced intuitively, have not
been validated by either experiments or DNS. The objective of the present study is
to evaluate these assumptions through the analysis of a channel flow DNS database,
and to find ways to improve the theoretical basis and performance of the model.
The main issues to be examined include the validity of the two-point correlation
approximation employed by Durbin (1991), the validity of the length scale used in
the elliptic operator, and the unsatisfactory behaviour of the model in the logarithmic
layer. A full explanation of these issues is given in § 2 and § 3. In § 4, the results of the
DNS analysis are discussed. It is found that the elliptic relaxation model is globally
consistent with the simulation data, and that the correlation length scale is adequately
modelled by the turbulent length scale bounded near the wall by the Kolmogorov
length scale. However, the correlation function between the fluctuating velocity and
the Laplacian of the pressure gradient is strongly anisotropic and inhomogeneous. Its
approximation by an isotropic, exponential function is responsible for the spurious
amplification of the energy redistribution in the log layer, as predicted by the model.
It is further discovered that the so-called ‘wall echo’ effect increases the redistribution
of energy, contrary to the general belief. The physical insights gained through the
DNS study are used, in § 5, to develop new formulations of the model that rectify
the erroneous logarithmic-layer behaviour. This is achieved by taking into account
the influence of strong inhomogeneity and anisotropy on the redistribution term,
using a spatially variable length scale and an asymmetric model of the correlation
function. Unlike some previous ad hoc formulations, the new formulations emphasize
a systematic, scientific approach to turbulence modelling, guided by the DNS data.
Finally, § 6 summarizes the major findings and accomplishments of this work.

2. Theoretical background
2.1. Integral equation of the redistribution term

The pressure gradient–velocity correlation entering the Reynolds stress transport
equations is

ρφ∗ij = −ui ∂p
∂xj
− uj ∂p

∂xi
, (2.1)

where ρ is the density, p is the fluctuating pressure and ui are the fluctuating velocity
components. The overline indicates ensemble average. Traditionally, this term is split
into pressure–strain correlation and pressure diffusion. However, since this splitting
is non-unique (Lumley 1975) and inconsistent with the Navier–Stokes equations in



310 R. Manceau, M. Wang and D. Laurence

the limit of two-dimensional turbulence (Speziale 1985), it appears more appropriate
to model the pressure gradient–velocity correlation as a whole. Since the pressure
diffusion is negligible in the main part of the flow, φ∗ij can be regarded as the energy
redistribution between the components of the Reynolds stress, except in the near-wall
region, where it balances the difference between dissipation and molecular diffusion.

The gradient of the pressure fluctuation is the solution of the Poisson equation
obtained from the divergence of the fluctuating part of the Navier–Stokes equations,

∇2 ∂p

∂xk
= −ρ ∂

∂xk

(
2
∂Ui

∂xj

∂uj

∂xi
+
∂ui

∂xj

∂uj

∂xi
− ∂ui

∂xj

∂uj

∂xi

)
. (2.2)

Following Kim (1989), it will be assumed that the contribution from the inhomo-
geneous boundary condition, or the ‘Stokes part’, is negligible. Accordingly, ∂p/∂xk
approximately satisfies a homogeneous Neumann boundary condition.

Using the Green function GΩ of the domain, the solution of (2.2) takes the form

∂p

∂xk
(x) =

∫
Ω

∇2 ∂p

∂xk
(x′)GΩ(x, x′) dV (x′), (2.3)

where x and x′ denote position vectors, and dV the elementary volume. The integral
equation of the redistribution term can be derived from (2.1) and (2.3):

ρφ∗ij(x) =

∫
Ω

Ψij(x, x
′)GΩ(x, x′) dV (x′), (2.4)

where Ψij(x, x
′) denotes the two-point correlation between the velocity and the Lap-

lacian of the pressure gradient:

Ψij(x, x
′) = −ui(x)∇2

∂p

∂xj
(x′)− uj(x)∇2

∂p

∂xi
(x′). (2.5)

2.2. The elliptic relaxation equation

In (2.4), the two-point correlations between the velocity and the Laplacian of the
pressure gradient need to be modelled. Durbin (1991) defined a correlation function

Ψij(x, x
′) = Ψij(x

′, x′)f(x, x′), (2.6)

and modelled it by

f(x, x′) = exp (−r/L), (2.7)

where r = ‖x′ − x‖ and L is the correlation length scale. This approximation is
the cornerstone of the elliptic relaxation model and the validity of (2.7) is the main
concern of this paper.

In a free space, using the model (2.7), the redistribution term can be written as

ρφ∗ij(x) = −
∫
Ω

Ψij(x
′, x′)

exp (−r/L)

4πr︸ ︷︷ ︸
E(r)

dV (x′). (2.8)

In this form, φ∗ij appears as a convolution product between Ψij and E(r), which is the

free-space Green function associated with the operator −∇2 + 1/L2. Owing to (2.6),
the one-point correlation in the integrand is expressed as a function of x′. If it were
expressed as a function of x, the one-point correlation could have been taken outside
the integral in (2.8), and the non-local effect would have been lost or entirely recast
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into f(x, x′), which would then be more difficult to model. The convolution integral
(2.8) can be inverted, yielding the elliptic relaxation equation:

φ∗ij − L2∇2φ∗ij = −L
2

ρ

(
ui∇2

∂p

∂xj
+ uj∇2

∂p

∂xi

)
. (2.9)

In homogeneous situations, the second term on the left-hand side of this equation
vanishes. Therefore, Durbin (1991) proposed replacing the right-hand side by any
quasi-homogeneous model φhij , which leads to the model

φ∗ij − L2∇2φ∗ij = φhij . (2.10)

This method provides a simple way of extending quasi-homogeneous models down to
solid boundaries, when appropriate boundary conditions for φ∗ij are applied (Durbin
1993).

3. Presentation of the DNS assessment
3.1. Issues to examine

The elliptic relaxation approach is mainly based on the assumption that the correlation
function f(x, x′), defined by (2.6), can be modelled by an exponential function. This
approximation was introduced by Durbin (1991) on an intuitive basis, in order to
preserve the non-local effect on the redistribution term. However, its validity has
never been checked before, and the shape of Ψij(x, x

′) needs to be investigated. The
DNS database of the channel flow at Reτ = 590 (Moser, Kim & Mansour 1999) will
be used for this purpose.

Another aim of this work is to evaluate the correlation length scale involved in
the model (2.7) for the correlation function f(x, x′). If the turbulent length scale were
used in the whole flow, since it goes to zero at solid boundaries the elliptic operator
L2∇2 would vanish at the wall, introducing a singularity in the differential equation.
Therefore, Durbin (1991) proposed using the standard turbulent length scale in the
main part of the flow, and the Kolmogorov length scale in the vicinity of the wall, i.e.

L = CL max

(
Cη
ν3/4

ε1/4
;
k3/2

ε

)
. (3.1)

It is of interest to evaluate precisely the correlation length scale from the DNS data,
in order to assess the validity of (3.1).

The ultimate objective of this work is to find ways to improve the model. As pointed
out by Wizman et al. (1996), the elliptic operator does not behave entirely correctly
in the logarithmic layer. Suppose, for instance, that the isotropization of production
model (Naot et al. 1973; Launder et al. 1975), denoted henceforth as the IP model,
and the Rotta (1951) model are used as the rapid and slow parts of the source term
φhij in (2.10). The redistribution term is then given by

φ∗ij − L2∇2φ∗ij = −C1

ε

k
(uiuj − 2

3
kδij)− C2(Pij − 2

3
Pδij), (3.2)

where Pij = −uiuk∂Uj/∂xk − ujuk∂Ui/∂xk and P = 1
2
Pii. In the logarithmic layer, the

Reynolds stresses are constant, and the production and the dissipation behave as
y−1. Thus, the right-hand side in (3.2) behaves as y−1, and the redistribution term is
then given by φ∗ij ≈ 1.51φhij . This result shows that the elliptic operator leads to an



312 R. Manceau, M. Wang and D. Laurence

amplification of the redistribution. Note that the same amplification occurs with any
model for φhij .

The overestimation of the energy redistribution by the Rotta/IP model in the
logarithmic layer has led a number of modellers to introduce wall-echo-type terms,
following Gibson & Launder (1978). It would be desirable for the elliptic relaxation
equation to compensate for this shortcoming. Some models, such as the Speziale
et al. (1991) model, or the Craft & Launder (1996) model, correctly reproduce the
redistribution in the logarithmic layer. In this case, it would be preferable that the
elliptic relaxation model be neutral, producing neither amplification nor reduction of
the redistribution.

Based on the above considerations, Wizman et al. (1996) proposed two new formu-
lations of the elliptic relaxation equation. First, they introduced a neutral formulation
by taking L2 in (2.10) inside the Laplacian operator:

φ∗ij − ∇2(L2φ∗ij) = φhij . (3.3)

Secondly, for models that overestimate the redistribution, they proposed

φ∗ij − L2∇ ·
(

1

L2
∇(L2φ∗ij)

)
= φhij , (3.4)

which exhibits the expected damping. Laurence & Durbin (1994) and Durbin &
Laurence (1996) suggested two other neutral formulations, given by

φ∗ij − ∇ · (L2∇φ∗ij) = φhij , (3.5)

and

φ∗ij − L∇2(Lφ∗ij) = φhij . (3.6)

These new formulations have been derived empirically and suffer from a lack of
justification, as emphasized by the authors themselves. This work aims, through a
DNS analysis, to provide a more solid basis for deriving such modifications to the
model. The central idea is that the correlation function f(x, x′) cannot be represented
by a simple exponential function, contrary to what was assumed by Durbin (1991).
Indeed, the presence of the wall induces a blocking effect, leading to not only an
elongation of the turbulent structures, but also an asymmetry in the direction normal
to the wall. Fluctuating quantities are correlated over a shorter distance in the
direction toward the wall than away from it. There is plenty of experimental evidence
(Hanjalić & Launder 1972; Sabot 1976) of this feature in two-point correlations
between components of the fluctuating velocity, and one can reasonably deduce that
the two-point correlations between the fluctuating velocity and the Laplacian of the
pressure gradient behave in a similar manner. The use of the symmetrical correlation
function (2.7) leads to overweighting the region between the point and the wall, which
may be the reason for the spurious behaviour of the elliptic relaxation equation in the
logarithmic layer. This issue will be explored in the present DNS analysis, in order to
understand how modifications to the elliptic relaxation model, such as those proposed
by Wizman et al. (1996), Laurence & Durbin (1994) and Durbin & Laurence (1996),
can be derived.

3.2. Channel flow database and post-processing

The correlation function f(x, x′) involves the Laplacian of the pressure gradient,
which contains three spatial derivatives. Therefore, a very accurate DNS database is
needed. The channel flow simulation at Reτ = 590 performed by Moser et al. (1999)
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was chosen because of its numerical accuracy, the large number of available statistical
samples, and the relatively high Reynolds number. This flow was computed on a grid
of 384 × 257 × 384 points in the streamwise (x), wall-normal (y) and spanwise (z)
directions, respectively. The computational domain is 2πh, 2h and πh in x, y and z,
where h denotes the channel half-width. The simulation code is based on a spectral
method for spatial derivatives (Fourier series in x and z, and Chebychev polynomials
in y), and a semi-implicit scheme for time integration. For statistical averaging, a total
of 75 fields (restart files) are available, in addition to the spatial averaging in x- and
z-directions.

The two-point correlations between the fluctuating velocities and the Laplacian of
the pressure gradient are needed for evaluating the correlation function f(x, x′). First,
the Laplacian of the total pressure is evaluated from the velocity field,

∇2p̃ = −ρ ∂ũi
∂xj

∂ũj

∂xi
, (3.7)

where the tilde denotes total quantities, using the same Fourier/Chebychev spectral
method as for the DNS. The gradient of this quantity is calculated using Fourier
spectral derivatives in x and z, and fourth-order finite differences in y. The one-point
and two-point correlations between this gradient and the total velocity components
are then calculated, and corresponding mean quantities are finally subtracted out
in order to obtain correlations between fluctuating quantities. The post-processing
computations are very time consuming, since they involve calculations of two-point
correlations and averaging over 75 restart files and (x, z)-planes. As a practical matter,
calculations are performed at seven representative y-locations only, for separations
restricted to (x, y)-, (x, z)- and (y, z)-planes.

4. Results and discussion
4.1. The wall echo

The wall echo concept originates from the form of the integral equation of the
redistribution term in a semi-infinite space bounded by an infinite plane (Ω =
R×R+ ×R). In this domain, it can easily be shown that the Green function is

GR×R+×R(x, x′) = − 1

4πr
− 1

4πr∗
, (4.1)

where r∗ = ‖x′∗ − x‖, x′∗ being the image of x′ in the plane y = 0. The image term
is due to the homogeneous Neumann boundary condition. Thus, at each point of
the domain, the pressure fluctuation is the sum of the fluctuations generated by the
velocity field and its reflection in the wall, which is called wall echo by analogy with
acoustics. This echo is instantaneous, since the fluid is considered as incompressible.

Since the paper of Launder et al. (1975), it has been widely accepted in the
turbulence community that this wall echo is responsible for the reduction of the
amplitude of the energy redistribution between components of the Reynolds stress.
In second-moment closures, wall echo terms are frequently incorporated to account
for this phenomenon, as proposed by Gibson & Launder (1978). These terms have
proven to be effective for simple flows but are often not well defined in complex
geometries.

The conclusion that wall echo reduces redistribution is, however, incorrect. Since
the image term in the Green function appears with the same sign as the principal
term, it actually induces an amplification of the redistribution.
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Figure 1. Comparison of the three terms in the integrand of (4.3) at y+ = 30 for separations in
the y-direction. (a) Integrand of φ∗11; (b) integrand of φ∗22. ——, Principal term (n = 0); – – –, image
term due to the wall at y+ = 0 (n = −1); ·−·−, image term due to the wall at y+ = 1180 (n = 1).
The vertical coordinate is arbitrarily normalized such that the maximum of n = −1 term is 1.

In the case of a channel (Ω = R× [0, 1]×R), the Green function is easily derived
after taking Fourier transforms in homogeneous directions. However, working in the
spectral space is not relevant in the present study. In order to examine the problem
of the wall echo effect in a channel, an approximate Green function is needed.

It can be shown (cf. Appendix A) that the simplest approximation to the Green
function which is valid down to the wall and accommodates the boundary conditions
is GΩ(x, x′) ≈ H(x, x′), with

H(x, x′0) = − 1

4π‖x′−1 − x‖ −
1

4π‖x′0 − x‖ −
1

4π‖x′1 − x‖ , (4.2)

where x′−1 and x′1 are the images of x′0 in the walls located at y = 0 and y = 1,
respectively.

With this approximation, the redistribution term (2.4) can be written as

ρφ∗ij(x) = − 1

4π

∫
Ω

Ψij(x, x
′
0)

(
1

‖x′−1 − x‖ +
1

‖x′0 − x‖ +
1

‖x′1 − x‖
)

dV (x′0). (4.3)

The three terms in the integrand, calculated from the DNS database, are shown in
figure 1, for the components φ∗11 and φ∗22. The solid line, representing the principal
term, has been truncated because it goes to infinity at y′ − y = 0. It can be seen
that the image term arising from the far wall at y+ = 1180 is negligible, but not the
term due to the near wall at y+ = 0. The exact weight of each term has not been
evaluated, since it involves integral of two-point correlations over separations in all
directions, which have not been calculated. Nevertheless, following Bradshaw (1973),
the amplitude of each term can be roughly estimated: the two-point correlation can
be approximated by a constant inside a sphere of radius L, and zero outside of it. If
L/y and y/2h are both small, (4.3) yields

ρφ∗ij(x) = −L
2

2
Ψij(x, x)

(
L

3y
+ 1 +

L

6h

)
. (4.4)

This result shows that, if the length scale is L = κy, the ratio of the image term
(n = −1) to the principal term is approximately 14%. For the second image term
(n = 1), the ratio is 0.07y/h, which is approximately 0.4% at y+ = 30. Thus, the first
image term cannot be neglected, as long as the length scale is of the order of κy.
Note that, contrary to Bradshaw (1973), who concluded that the presence of the wall
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changes the redistribution term by ±0.14, we can affirm that the sign is positive, i.e.
the wall echo actually increases the redistribution. Indeed, it can be seen in figure 1
that the contribution of the image terms to the integral is of the same sign as that
of the principal term. The weight of the negative excursions of the first image term is
far too small to change the sign of the total contribution of this term.

Thus, an interesting and important conclusion can be drawn. The actual wall echo
leads to an amplification of the redistribution, contrary to the common belief. The
Gibson & Launder (1978) type terms, which have been found useful in reproducing
the strong anisotropy near walls, have the correct damping effect, but for the wrong
reason. This damping cannot be traced to the wall echo effect, i.e. the appearance
of an image term in the Green function. Rather, it is caused by the damping of the
two-point correlation itself, due to the modification of the turbulence by the wall, as a
consequence of the non-local nature of the redistribution term in the strongly inhomo-
geneous boundary layer. The success of Gibson & Launder (1978) type terms lies in the
introduction of non-local effects through the explicit reference to the wall distance, and
we believe the more recent attempts to replace these terms by highly nonlinear models
is not the best route to follow. Non-local models, such as the elliptic relaxation model,
appears more suitable for accounting for the influence of the wall on the turbulence.

4.2. Asymmetry in the y-direction

In this section the shape of the correlation function defined by (2.6) is evaluated.
One problem that arises is that this function should depend on the component (i, j).
Indeed, a different correlation function can be evaluated for each component of φ∗ij by

f(x, x′) =

uα(x)∇2 ∂p
∂xβ

(x′) + uβ(x)∇2 ∂p
∂xα

(x′)

uα(x′)∇2 ∂p
∂xβ

(x′) + uβ(x′)∇2 ∂p
∂xα

(x′)
, (4.5)

without summation over Greek indices. Thus, it is impossible to derive a model for
f which matches all the DNS results.

In fact, the most general relation between two-point correlation and one-point
correlation tensors, if they are assumed to be linearly connected, is

Ψij(x, x
′) = fijkl(x, x

′)Ψkl(x
′, x′). (4.6)

In this relation, the fourth-order tensor fijkl involves 81 coefficients, but their number
can be dramatically reduced by using symmetry properties, as shown by Naot et al.
(1973). However, this type of relation remains too complicated for the purpose of
accounting for the non-local effect. Therefore, a simple scalar correlation function is
used, keeping in mind that it can only represent approximately the non-local effect.
The following results must be interpreted in this sense.

The correlation functions evaluated from (4.5) are shown in figure 2. The correlation
functions in figures 2(a) and 2(b) correspond respectively to φ∗11 and φ∗22. Some features
which can be seen in this figures are rather favourable to the elliptic relaxation model:
first, the correlation functions exhibit sharp peaks, which is consistent with the use
of an exponential function to model them; secondly, the correlation lengths for both
components 11 and 22 evolve in a similar way when the fixed location moves away
from the wall.

However, some other features do not agree with the simple model assumptions.
First, the peaks in figure 2(a) are much broader than those in figure 2(b), indicating
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Figure 2. Shape of the correlation function calculated from the DNS database at seven different
y-locations: y+ = 4, 14, 30, 80, 150, 400, 590. Separations in the x- and z-directions are zero. f(x, x′)
is evaluated from (4.5) with: (a) α = β = 1; (b) α = β = 2. For clarity, curves have been truncated
at large separations.

that the correlation length scale is not the same for all the components. Secondly, the
correlation function exhibits negative excursions, at locations close to the wall for the
11-component, and everywhere in the channel for the 22-component. These features,
which are very similar to those observed in the two-point velocity correlations in
boundary layer experiments (Grant 1958; Favre, Gaviglio & Dumas 1957, 1958), call
into question the modelling of the correlation function by a simple exponential func-
tion. Nevertheless, as emphasized previously, the model is not intended to represent
exactly the two-point correlations, but only to globally account for the non-local
effect. Moreover, it will be shown in the following sections that the correlation length
scale, evaluated as the half-width of the peak of the correlation function, is very simi-
lar to the integral scale. This indicates that the negative excursions do not contribute
significantly to the integral, and thus do not strongly influence the redistribution term.

The main feature which arises from these figures is that the correlation functions
do not have symmetrical shapes. It can also be seen that the maxima of the peaks do
not generally occur at zero separation. As it is defined, the correlation function is not
restricted to be smaller than one. Values greater than one can occur if the amplitude
(r.m.s. value) of the fluctuating velocity varies rapidly with distance to the wall.

The main implication of this asymmetrical shape is that the points x′ located
between the fixed point x and the wall contribute less to the integral than points
x′ toward the core of the flow. Hence, modelling the correlation function by a
symmetrical exponential function leads to overweighting the points toward the wall,
thus increasing the value of the integral (a formal proof of this can be found in
Appendix B). This problem is illustrated by figure 3, for the 22-component. The
correlation functions calculated from the DNS using (4.5), as well as from two
models, are shown in figure 3(a). The first one is the original model, i.e. a simple
exponential function, whereas the second takes into account the gradient of the length
scale in order to reproduce the previously noted asymmetry. In figure 3(b), two-point
correlations obtained by multiplying the one-point correlation from the DNS by
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by the original model Ψ22(x, x′) = ΨDNS

22 (x′, x′)f1(x, x′); – – –, two-point correlation given by the
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the modelled correlation function are shown. It can be seen that, with the original
model, points toward the wall are overweighted, whereas with the corrected model,
the two-point correlations are much better reproduced in this region.

The overweighting of the two-point correlation for separations in the direction of the
wall is thought to be at the origin of the erroneous amplification of the redistribution in
the logarithmic layer noted in § 3.1. As shown in figure 3(b), introducing a dependence
on the gradient of the length scale in the model to account for the asymmetry of
the correlation function corrects this deficiency. It will be shown, in § 5.2, that a new
formulation of the elliptic relaxation function can be derived from this extended model
and, in § 5.3, that this formulation overcomes the shortcomings of the original one.

4.3. Anisotropy

The asymmetry in the direction normal to the wall, which has been emphasized in the
previous section, is not the only anisotropy. The purpose of this section is to point out
that the correlation function does not possess the same shape for separations in the
three principal directions. This anisotropy is visible in figures 4 and 5, for correlation
functions corresponding to φ∗11 and φ∗22, respectively. At locations very close to the
wall (figures 4a, b and 5a, b), the correlation function is strongly elongated in the
streamwise direction, in particular for the 22-component (figure 5a, b). This is mainly
due to the fact that, in the y-direction, the correlation length scale is constrained by
the presence of the wall (wall-blocking effect). In figures 4 and 5, it can be noted
that f goes to infinity at the wall. For instance, for the 22-component, f behaves
as y′−2 when x′ approaches the wall. This is a consequence of its definition (4.5):
the two-point correlation only contains u2(y), which is constant with respect to y′,
whereas the one-point correlation involves u2(y

′), which behaves as y′2.
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Away from the wall, the correlation function becomes increasingly isotropic (fig-
ures 4c–f and 5c–f). In the centre of the channel, it is completely isotropic for the
11-component (figure 4g), but still slightly elongated in the streamwise direction for
the 22-component (figure 5g). These features are also conspicuous in figures 6–11. In
parts (a), (b) and (c), the shapes of the correlation functions are shown for separa-
tions in (x, y)-, (x, z)- and (y, z)-planes, respectively. The iso-correlation contours in
these planes are shown in part (d). The elongation of the correlation function, which
is consistent with the well-known elongation of turbulent structures near the wall,
clearly appears in figures 6 and 7, in particular for the 22-component. It gradually
decreases when the fixed point x moves away from the wall (figures 8 and 9). Further
away from the wall (figures 10 and 11), the elongation in the streamwise direction is
almost totally removed, but the asymmetry in the y-direction, emphasized in § 4.2, is
visible.

The model does not account for the elongation in the streamwise direction, since it
uses a function of r, which does not distinguish different directions. This shortcoming
cannot be responsible for the spurious amplification of the redistribution in the
logarithmic layer, pointed out in § 3.1, since in the case of a channel flow, the non-
local effect does not act in the homogeneous directions x and z. Nevertheless, in more
complex flows, this feature of the correlation function can become significant. In § 5.1,
a new formulation of the elliptic relaxation equation will be proposed, allowing the
introduction of different length scales in each direction, thus taking into account the
anisotropy of the turbulent structures.

4.4. Length scales

It is noted that the function exp (−r/L) takes the value 1/e for r = L. Hence, the
correlation length scale can be defined by the separation at which the correlation
function takes this value. Notwithstanding its simplicity, this method provides an
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evaluation of a length scale Lm, defined implicitly by

f(x, x+ Lmm) = 1/e, (4.7)

in each direction m, including the inhomogeneous direction. The drawback is that
this definition only enables the characterization of the shape of the function at
moderate separations and cannot account for more complex features, such as negative
excursions.

Figure 12 shows the different length scales evaluated with this method from the
correlation functions corresponding to φ∗22, depicted in figure 5. In figure 12(a), three
length scales in the y-direction are compared: the left length scale, defined by (4.7)
with m = −e2 (e1, e2 and e3 being the basis vectors in the streamwise, wall-normal and
spanwise directions, respectively); the right length scale, defined by (4.7) with m = e2;
and the central length scale, which is the algebraic mean of the two previous ones,
i.e. the half-width of the correlation function. It can be noted that the asymmetry,
already emphasized in § 4.2, is rather strong in the main part of the flow. Except
for the peculiar behaviour at y+ = 14, the asymmetry increases continuously with
distance from the wall until it reaches a maximum, and then decreases in the vicinity
of the centre. Note that the correlation function should be symmetrical at the centre
if the data were perfectly statistically converged (the data have not been artificially
symmetrized).

In figure 12(b), the central length scale in the y-direction, already plotted in fig-
ure 12(a), is compared to the length scales in the x- and z-directions. This comparison
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Figure 13. Comparison of the different length scale definitions for the φ∗22 component, evaluated
from the DNS data: �, correlation length scale L (central length scale in figure 12a), defined
as the half-width of the correlation function; ◦—–◦, integral length scale Lint defined by (4.10)
with i = j = 2; – – –, turbulent length scale used in the model LT = CLk

3/2ε−1 (CL = 0.045); ——,
Kolmogorov length scale used near the wall in the model LK = CηCLν

3/4ε−1/4(Cη = 80).

provides a quantitative evaluation of the anisotropy of the correlation function, seen
in figures 4–11, and shows that the anisotropy of φ∗22 is very important everywhere
in the domain. The three length scales show qualitatively the same variation across
the channel, except below y+ = 50, where the streamwise length scale exhibits a
sharp spike, corresponding to the strong elongation of the iso-correlation contours
emphasized in § 4.3.

Figure 13 shows a comparison between the correlation length scale, defined as the
half-width of the correlation function (the central length scale in figure 12a, b), and



324 R. Manceau, M. Wang and D. Laurence

the integral length scale Lint . In order to define the latter, let us introduce the standard
correlation function F (cf. for instance, Monin & Yaglom 1975) to be used in the
integral equation (2.4):

Ψij(x, x
′) = Ψij(x, x)F(x, x′), (4.8)

where, contrary to (2.6), the one-point correlation is expressed in x. The one-point
correlation can then be taken outside the integral, which gives

ρφ∗ij(x) = Ψij(x, x)

∫
Ω

F(x, x′)H(x, x′) dV (x′). (4.9)

This formulation suggests the definition of the integral length scale

L2
int (x) =

∣∣∣∣∫
Ω

F(x, x′)H(x, x′) dV (x′)
∣∣∣∣ =

∣∣∣∣ ρφ∗ij(x)

Ψij(x, x)

∣∣∣∣ , (4.10)

plotted in figure 13. Also plotted are the length scales used in Durbin’s model (3.1),
namely the Kolmogorov length scale LK , which is active in the vicinity of the wall,
and the turbulent length scale LT .

The first important feature to be noted is that the correlation length scale is very
close to the integral length scale in the main part of the flow, which leads to a very
important conclusion: the most significant contribution of the correlation function to
the integral (4.10) is given by its values at moderate separations. Integral properties
of the correlation function are thus mainly due to the shape near the peak. The
complex features of the correlation function demonstrated in figures 2 and 4–11,
in particular the negative excursions, appear to have no significant influence. The
redistribution term φ∗ij , which is given by the integral of the two-point correlation,
can be expected to depend only on the shape of the correlation function at moderate
separations. Therefore, the use of a simple model function, such as the exponential
function (2.7), seems to be totally justified by figure 13. However, as mentioned in
§ 4.2, the asymmetry in the y-direction is missed by the model (2.7), which leads, as
shown in Appendix B, to the erroneous amplification of the redistribution in the
logarithmic layer noted in § 3.1. The model must be modified, as shown in figure 3,
to account for this asymmetry, as well as for the anisotropy emphasized in § 4.3. This
issue will be discussed in the following sections.

In the vicinity of the wall, the correlation length scale L and the integral length
scale Lint do not have similar behaviour: L approaches a value of 6, whereas Lint

decreases rapidly toward the wall. This behaviour justifies the use of a lower bound in
the model (3.1). The two length scales LT and LK , used in this model, are also plotted
in figure 13. The turbulent length scale LT provides a very satisfactory representation
of the integral length scale throughout the flow, except near the centre of the channel.
It should be noted that in this region, both φ∗ij and Ψij are small, and the evaluated
integral scale is contaminated by numerical errors. Hence, the strong decrease of Lint

beyond y+ = 500 is probably not physical. The curve has been truncated at y+ ≈ 550
to improve the clarity of the figure. Since in the main part of the flow, the integral
length scale Lint and the correlation length scale L are very close to each other, the
model LT represents very satisfactorily the correlation length scale down to y+ ≈ 100.
Below this point, figure 13 shows that the Kolmogorov length scale LK must be
used. The point where LT becomes smaller than LK when moving toward the wall is
approximately located where L and Lint diverge. The location of this point depends
on the coefficient Cη; in figure 13, the original coefficient Cη = 80, chosen to give the
experimental value of the correlation length scale at the wall (Durbin & Laurence
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1996), has been used. In order to compare the shape of the modelled length scale
against the data, the coefficient CL has been set to 0.045 in this figure. The fact that
the length-scale shapes are very similar is an a posteriori justification for the use of
the formulation L = max(LK, LT ) in Durbin’s model.

The above results have addressed some important issues about the elliptic re-
laxation method. In particular, they justify the use of a model for the correlation
function which does not account for the negative excursions. They also confirm the
necessity of bounding the length scale near the wall by the Kolmogorov length scale.
However, it was shown in §§ 4.2 and 4.3 that modelling the correlation function by a
simple isotropic exponential function is too crude an approximation. This is at the
origin of the spurious behaviour in the logarithmic layer. In the following sections,
reformulations of the model will be proposed and their behaviour analysed.

5. Reformulation of the model
5.1. Correction of the inversion error

The elliptic relaxation equation is derived from the integral equation of the redistribu-
tion term (2.4), which is transformed into (2.8) by using the model (2.7). Equation (2.8)
can be inverted to give the elliptic relaxation equation if the integral is a convolution
product, i.e. if the function denoted E(r) truly depends only on r, or at most on the
separation x′ − x. This is, however, not the case, since the length scale depends on
the location. This inversion is valid only if the length scale can be considered locally
constant, which implies that ‖∇L‖ is much smaller than unity. Since the coefficient
CL is chosen such that ‖∇L‖ = κ = 0.41 in the logarithmic region, the length scale
cannot be considered as a constant. If (2.9) is meant to be equivalent to (2.8), an
inversion error is introduced.

In order to avoid this inversion error, it is necessary to treat the variation of L. A
coordinate transformation x 7→ α(x) can be introduced, such that in the transformed
space the length scale is roughly a constant, and the boundaries of the domain are
preserved: α(Ω) = Ω. In a channel, it is simply given implicitly by dα2/Lα = dy/L(y),
i.e. by the integral

α2(y) =

∫ y

0

Lα

L(y′)
dy′, (5.1)

where Lα is a constant, chosen such that the domain is globally preserved:

Lα = 2h

(∫ 2h

0

dy′

L(y′)

)−1

. (5.2)

Other directions can either be kept unchanged (α1(x) = x and α3(x) = z) or be
transformed according to the previously noted anisotropy. An example of such a
transformation in a two-dimensional domain is given in Appendix C.

Figure 14 shows how the shape of the correlation function corresponding to φ∗22

is modified by α. It can be seen that, after the transformation, the correlation length
scale is constant across the channel. It can also be seen that the transformation
almost completely removes the asymmetry in the y-direction. Note that, in this figure,
the transformation of the correlation is plotted, instead of the correlation between
transformed quantities (the space transformation and the evaluation of the two-point
correlations are not commutable). This approximation is used only in this figure to
illustrate the effect of α on the length scale, but not in the subsequent analysis.

Let us define the functions: ξi = ∂p/∂xi ◦ α−1, wi = ui ◦ α−1 and ζij = φ∗ij ◦ α−1,
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where ◦ denotes the function composition: f ◦ g(x) = f(g(x)). Note that these func-
tions are defined on the same domain Ω as the original quantities ∂p/∂xi, ui and φ∗ij ,
since α maps Ω to itself. Additionally, let gi be the Laplacian of ξi, i.e.

gi =
∂2ξi

∂xk∂xk
. (5.3)

The same method as in § 2 can be applied to derive a new form of the elliptic
relaxation equation. First, one can assume that a homogeneous Neumann boundary
condition can be applied to ξk , so that it satisfies the following integral equation (see
Appendix C for details in a one-dimensional case):

ξk(x) =

∫
Ω

gk(x
′)GΩ(x, x′) dV (x′). (5.4)

In this expression, GΩ is the same as in (2.3), since the Green function only depends
on the domain. ζij then satisfies

ρζij(x) =

∫
Ω

Θij(x, x
′)GΩ(x, x′) dV (x′), (5.5)

where Θij(x, x
′) = −wj(x)gi(x′)− wi(x)gj(x′).

In a free space, (5.5) reduces to

ρζij(x) = −
∫
Ω

Θij(x, x
′)

dV (x′)
4πr

. (5.6)

The two-point correlations can then be modelled by

Θij(x, x
′) = Θij(x

′, x′) exp (−r/Lα), (5.7)

leading to

ρζij(x) = −
∫
Ω

Θij(x
′, x′)

exp (−r/Lα)
4πr

dV (x′). (5.8)
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Equation (5.8) is similar to (2.8), the main difference being that the length scale Lα
is now truly a constant. Thus, (5.8) is a convolution integral, which can be inverted
without introducing an inversion error:

ζij(x)− L2
α

∂2ζij

∂xk∂xk
(x) = −L

2
α

ρ
Θij(x, x). (5.9)

Introducing the Jacobian matrix of the inverse transformation, A = ∇α−1, the equation
satisfied by φ∗ij is

φ∗ij − L2
αAklAml

∂2φ∗ij
∂xk∂xm

− L2
αAml

∂Akl

∂xm

∂φ∗ij
∂xk

= φhij . (5.10)

In this equation, as in § 2.2, the right-hand side has been replaced by a quasi-
homogeneous model, noting that in homogeneous situations, (5.10) reduces to

φ∗ij = φhij . (5.11)

Now, a matrix of length scales can be introduced by defining Aij = Lij/Lα, which
yields a new form of the elliptic relaxation equation:

φ∗ij − LklLml
∂2φ∗ij
∂xk∂xm

− Lml ∂Lkl
∂xm

∂φ∗ij
∂xk

= φhij . (5.12)

This new formulation is more complicated than the original one, but allows for length
scale anisotropy, which has been found to be very significant in § 4. As will be shown
in § 5.3, it does not exhibit the same spurious behaviour in the logarithmic layer.

The remaining issue is the modelling of Lij . The most natural choice is

Lij =
3

2

uiuj

k
L, (5.13)

where L is given by the original model (3.1). Another possibility is simply

Lij = Lδij , (5.14)

which neglects the anisotropy but reduces significantly the complexity of (5.12), which
becomes

φ∗ij − L2∇2φ∗ij − L∇L · ∇φ∗ij = φhij . (5.15)

This formulation only differs from the original one by the presence of the third term
on the left-hand side. This term accounts for the variations of the length scale. Note
that (5.15) can be rewritten as

φ∗ij − L∇ · (L∇φ∗ij) = φhij . (5.16)

This formulation is close to those proposed by Wizman et al. (1996), Laurence &
Durbin (1994) and Durbin & Laurence (1996), but it will be demonstrated in § 5.3
that it still exhibits an amplification of the redistribution in the logarithmic layer.

5.2. Correction to the model of the correlation function

In § 4.2, it has been pointed out that the correlation function is strongly asymmetric
in the direction normal to the wall. Figure 3 shows that using the original model
for the correlation function, the two-point correlation between the fixed point x and
the wall is overestimated. This shortcoming can be corrected by taking into account
the gradient of the length scale, thus giving an asymmetric shape to the model for
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the correlation function:

f(x, x′) = exp

( −r
L+ β(x′ − x) · ∇L

)
, (5.17)

which has been plotted for β = 1 in figure 3.
Considering the term β(x′ − x) · ∇L as a small correction, a Taylor series expansion

of (5.17) leads to the expression

f(x, x′) ∼ exp (−r/L)(1 + β(r/L2)(x′ − x) · ∇L). (5.18)

If (5.18) is combined with (2.6) and (2.4), using the free-space Green function, one
obtains

ρφ∗ij(x) = −
∫
Ω

Ψij(x
′, x′)

exp (−r/L)

4πr
dV (x′)︸ ︷︷ ︸

ρφ∗aij

−
∫
Ω

Ψij(x
′, x′)β

r

L2

exp (−r/L)

4πr
(x′ − x) · ∇L dV (x′)︸ ︷︷ ︸

ρφ∗bij

. (5.19)

In this equation, the first term, φ∗aij , is exactly the redistribution term given by the
original model, and satisfies

φ∗aij − L2∇2φ∗aij = −L
2

ρ
gij , (5.20)

where gij(x) ≡ Ψij(x, x). The second term φ∗bij can be considered as a correction term.
Using a Taylor series expansion of gij(x

′) in the vicinity of the fixed point x, one
obtains

ρφ∗bij (x) = −
∫
Ω

(x′ − x) · ∇gij β(r/L2)(x′ − x) · ∇Lexp (−r/L)

4πr
dV (x′), (5.21)

which gives exactly, in a free space,

ρφ∗bij = −8βL3∇L · ∇gij . (5.22)

Following Durbin (1991), the right-hand side of (5.20) can be replaced by any quasi-
homogeneous model φhij , which corresponds to modelling gij by −ρφhij/L2. There are
then two possible ways to take into account the correction term in the model. First,
in (5.22), gij can be approximated by −ρφ∗aij /L2, which leads to

φ∗aij − L2∇2φ∗aij = φhij , (5.23)

ρφ∗bij = 8βL∇L · ∇φ∗aij − 16β(∇L)2φ∗aij . (5.24)

Thus, (5.23) gives exactly the same solution as the original model, while (5.24) provides
an explicit correction (φ∗ij = φ∗aij + φ∗bij ). The second possibility is to take into account
the correction implicitly:

(1 + 16β(∇L)2)φ∗ij − L2∇2φ∗ij − 8βL∇L · ∇φ∗ij = φhij . (5.25)

This implicit formulation is probably preferable for stability reasons. In (5.25), the
same term L∇L · ∇φ∗ij as in (5.15) appears, but with the coefficient 8β. This shows
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that the space transformation introduced in § 5.1 also corrects the asymmetry in the
y-direction, as can be seen in figure 14.

It is worth pointing out that the same type of correction has been used by Launder
& Tselepidakis (1991), in order to take into account the inhomogeneity of the flow
near a wall, and thus avoid the use of wall-echo correction terms. Usually, the rapid
part of the redistribution term is evaluated as the tensorial product between a fourth-
order tensor and the gradient of the mean velocity. Launder & Tselepidakis (1991)
proposed replacing the latter by an effective velocity gradient given by

∂Ul

∂xm

∣∣∣∣
eff

=
∂Ul

∂xm
+ cI ln

∂ln

∂xk

∂2Ul

∂xk∂xm
, (5.26)

where cI = 0.3, and ln = (k/ε)(upuqnpnq)
1/2 is a scalar length scale in the direction of

the outward normal to the wall. Thus, in (5.15), (5.25) and (5.26), by three different
reasonings, the same type of correction, of the form L∇L · ∇A, where A denotes either
φ∗ij or ∂Ul/∂xm, has been introduced in order to reduce the energy redistribution
between the components of the Reynolds stress in the logarithmic layer. The effect of
the corrections proposed in the present paper is investigated in the next section.

5.3. Redistribution reduction in the logarithmic layer

In § 3.1, it has been shown that, irrespective of the quasi-homogeneous model, the
original formulation gives an amplification of the redistribution in the logarithmic
layer. In fact, no matter what formulation of the elliptic relaxation equation is
considered, the same analysis leads to an expression of the form

φ∗ij = Γφhij , (5.27)

where

Γ =
1

1 + γC2
LC
−3/2
µ κ2

, (5.28)

thus relating the redistribution term given by the elliptic relaxation model to its
underlying quasi-homogeneous model. This analysis is based on the logarithmic

layer assumptions: φhij = Ah/y, k = u2
τ/C

1/2
µ and ε = u3

τ/κy, where Ah is a constant
and uτ denotes the friction velocity. In (5.27), φ∗ij is not the exact solution of the
differential equation, but only a particular solution in the logarithmic layer (no
boundary conditions are considered). The amplification factor Γ characterizes the
effect of the elliptic relaxation equation in this region.

The coefficient γ in (5.28) depends on the formulation of the elliptic relaxation
equation. It is given in table 1, along with an estimation of the amplification factor Γ .
The length scale L used in the calculations is given by (3.1) for all the formulations. No
alternative definition of L is needed in the new formulations M1, M2 and M3, since
they explicitly involve the gradient of L to account for inhomogeneity. The coefficient

CL is chosen such that the length scale is L = κy in the logarithmic layer: CL = C
3/4
µ .

In the case of the fully anisotropic model M2, the anisotropies aij = uiuj/k− 2
3
δij in the

logarithmic layer are required, since they enter the anisotropic length scale (5.13). The
following logarithmic layer values have been used: a12 = −0.30; a22 = −0.42. In the
case of model M3, γ, and hence Γ , are functions of the coefficient β. As β varies from
0 (original model D1) to ∞, Γ varies from 1.51 to 0. Note that the explicit version of
M3, given by (5.23) and (5.24), has the same behaviour as M3 to the first order.

It can be seen in the table that the new models M1, M2 and M3, which are derived
from theoretical considerations, unlike the ad hoc models W1, L1, D2 and W2, have



330 R. Manceau, M. Wang and D. Laurence

Equation Model γ Γ

(2.10) D1 (Durbin 1991) −2 1.51

(3.3) W1 (Wizman et al. 1996) 0 1
(3.5) L1 (Laurence & Durbin 1994) 0 1
(3.6) D2 (Durbin & Laurence 1996) 0 1
(3.4) W2 (Wizman et al. 1996) 2 0.75

(5.15) M1 (this paper) −1 1.2
(5.12) M2 (this paper) − 9

4
(u1u2

2/k2 + u2u2
2/k2) 1.06

(5.25) M3 (this paper) 2(12β − 1) 0–1.51

(5.29) GS (Gibson & Launder 1978) NA 0.67
(5.30) GR (Gibson & Launder 1978) NA 0.40
(5.26) LT (Launder & Tselepidakis 1991) NA 0.53

Table 1. Logarithmic layer analysis of the different formulations of the elliptic relaxation equation

various types of behaviour. The first one, M1, which attempts to limit the inversion
error (§ 5.1) but does not account for the anisotropy of the length scale, induces an
amplification of the redistribution. The factor ΓM1 is lower than ΓD1, since the term
−L∇L · ∇φ∗ij , which distinguishes M1 from D1, moves in the right direction. However,

it is not sufficiently large to remove all the amplification due to the term L2∇2φ∗ij .
When the length scale anisotropy is taken into account (M2), the amplification factor
falls to ΓM2 = 1.06. Thus, model M2 can be referred to as a quasi-neutral model.
In model M3, β can be chosen to give any amplification factor between 0 and 1.51.
The presence of the coefficient β enables adjustment of the weights of the terms
−L∇L · ∇φ∗ij and (∇L)2φ∗ij . By choosing β = 1

12
, the model becomes neutral (Γ = 1).

The amplification factors for the 22-components of the slow and rapid parts of the
Gibson & Launder (1978) model are shown in table 1 for comparison. The slow part
of the wall echo terms is given by

φwSij = C ′1
ε

k
(ukumnknmδij − 3

2
ukuinknj − 3

2
ukujnkni) f

(
LT

niri

)
, (5.29)

where C ′1 = 0.5. The rapid part is

φwRij = C ′2(φkmnknmδij − 3
2
φiknknj − 3

2
φjknkni) f

(
LT

niri

)
, (5.30)

where C ′2 = 0.3. The amplification factor for the formulation (5.26) proposed by
Launder & Tselepidakis (1991), used with the linear IP model, is also shown.

This simple analysis of the logarithmic layer shows that modifications of the
elliptic relaxation equation can overcome the deficiencies of the original model. The
formulation to be chosen depends on the quasi-homogeneous model used as the
source term. The most natural choice is to use a model which predicts correctly the
redistribution in the logarithmic layer, such as the Speziale et al. (1991) model (see
e.g. Demuren & Sarkar 1993; Hadžić 1999; Manceau 1999), together with a neutral
formulation of the elliptic relaxation equation, M2 or M3 with β = 1

12
. Less elaborate

models, such as the Rotta/IP model, which overestimates the redistribution in the
logarithmic layer, should be used with a formulation like the M3 model, with a
coefficient β larger than 1

12
, without any wall-echo correction terms.
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Since these new formulations of the elliptic relaxation equation have amplification
factors close to those previously proposed by Wizman et al. (1996), Laurence &
Durbin (1994) and Durbin & Laurence (1996), they are expected to give similar
results in practical applications. It was noted, in § 3.1, that the formulations W1, L1,
D2 and W2 suffer from a lack of justification, and accordingly, the new formulations
should be preferred.

Further a priori tests and actual computations using the new formulation M3
have been performed recently. The results, discussed in detail elsewhere (Manceau &
Hanjalić 2000), demonstrate that an overall benefit is obtained by using the modified
form of the elliptic relaxation equation in a channel flow. The a priori tests show
that when the Rotta/IP model is used as the source term of the elliptic relaxation
equation, the M3 model, with the coefficient β chosen to obtain a reduction of
the redistribution in the logarithmic layer, corrects the overestimation due to the
Rotta/IP model as expected. The results are comparable to those obtained from the
redistribution-reducing model W2. If the SSG model (Speziale et al. 1991), which
correctly predicts the redistribution in the logarithmic layer, is used as the source
term, the M3 model gives results similar to those from the neutral W1 model. Both
models are shown to be preferable to the original (D1) model.

Consequently, the optimal combinations of the SSG model (as source term) with
the neutral elliptic relaxation formulations W1 and M3, respectively, have been
implemented in a Reynolds stress model and tested in full computations of a channel
flow (Manceau & Hanjalić 2000). The results given by the two forms W1 and M3
are nearly indistinguishable. The use of these neutral formulations improves, in the
buffer and logarithmic layers, the prediction of the mean velocity profile, which is
underpredicted by the original elliptic relaxation model. Moreover, the anisotropy,
and in particular the peak of u2, are better captured by these models.

Manceau & Hanjalić (2000) further show that, in the framework of the v2–f
model (Durbin 1991), the two neutral models (W1 and M3 with β = 1

12
) as well

as a redistribution-reducing model (M3 with β = 1
6
) are capable of correcting the

overestimation of the mean velocity by the original formulation, without adversely
affecting the prediction of the turbulent kinetic energy.

6. Conclusions
The elliptic relaxation method is a promising way to model correctly the redistri-

bution term down to solid boundaries. It can be expected to be somewhat universal,
since it is based on theoretical grounds. However, some of the modelling assumptions
can be called into question, and the behaviour of the original model is not entirely sat-
isfactory in the logarithmic layer. The DNS database of a channel flow at Reτ = 590
(Moser et al. 1999) has been analysed in order to understand the reasons for this
spurious behaviour and to examine a number of open issues. Several conclusions can
be drawn:

(i) The use of an exponential form to model the correlation function between the
velocity and the Laplacian of the pressure gradient is consistent with the data. In
particular, the coincidence of the integral scale and the half-width of the correlation
function for moderate separations shows that the correlation function shape for large
separations does not have a significant influence on the redistribution term.

(ii) The presence of a solid boundary induces a strong anisotropy of the turbulent
structures, and in particular a significant asymmetry in the wall-normal direction.
This feature is not accounted for by the simple isotropic correlation function used in
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Durbin’s model. This weakness is at the origin of the erroneous amplification of the
redistribution of energy between the components of the Reynolds stress observed in
the logarithmic layer.

(iii) The modelling of the correlation length scale by the turbulent length scale
bounded near the wall by the Kolmogorov length scale is well corroborated by the
DNS data.

(iv) The wall echo effect, which corresponds to the appearance of image terms in
the Green function, increases the redistribution of energy, contrary to the common
belief. Accordingly, it cannot be considered responsible for the observed damping in
the logarithmic layer.

This study shows that the elliptic relaxation model, first derived intuitively by
Durbin (1991), is based on assumptions relatively consistent with the DNS database.
Even though the model is too simple to represent exactly the two-point correlations
involved in the integral equation of the redistribution term, it reproduces the important
non-local effect which cannot be accounted for by any algebraic model.

Based on the physical insights gained through the present DNS analysis, modifi-
cations of the model have been proposed in order to account for the inhomogeneity
and anisotropy effects. The first modification is based on the observation that the
length scale in the elliptic relaxation equation cannot be considered locally as constant.
A new formulation of this equation, which accounts for this feature, includes the effect
of the anisotropy of turbulence through a rather complicated tensorial expression. In
the second modification, an asymmetric correlation function is introduced, by using
the gradient of the length scale to identify the direction of inhomogeneity. This results
in a second new formulation of the elliptic relaxation equation, involving fewer terms
than the first one.

Neither new formulation exhibits the same amplification of the redistribution in the
logarithmic layer as the original one. The first one can be referred to as quasi-neutral
since its amplification factor is only Γ = 1.06, compared to Γ = 1.51 for the original
formulation. The second formulation can be neutral or exhibit a reduction, depending
on the coefficient β which controls the sensitivity of the correlation function to the
length scale gradient. Thus, either of the formulations can be chosen, depending
on the quasi-homogeneous model used as the source term and whether or not its
behaviour in the logarithmic layer needs correction. The new formulations are similar
to those proposed by Wizman et al. (1996), Laurence & Durbin (1994) and Durbin
& Laurence (1996), but have the advantage of being based on rigorous theoretical
grounds.

Further studies, including a priori tests and computations in a channel flow using
new formulations, have been conducted (Manceau & Hanjalić 2000). It has been
shown that modifying the elliptic operator according to (5.25) indeed improves, in the
logarithmic region, the mean velocity profile and the turbulent quantities predicted
by Durbin’s Reynolds stress model as well as by the v2–f model. In future studies,
the new formulations will be tested and calibrated in more canonical test cases, in
order to be ultimately applicable to complex engineering flows.
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Figure 15. Sketch of the channel C0 = R× [0, 1]×R and its images C−1 and C1.

Appendix A. Approximation of the Green function in a channel
The purpose of this Appendix is to derive an approximate Green function in a

channel that is sufficient to preserve the correct features of the solution of a Neumann
problem, and in particular its boundary conditions.

Let us consider the channel C0 = R×[0, 1]×R shown in figure 15, bounded by two
infinite planes P0 and P1 located in y = 0 and y = 1, respectively. In this domain,
the problem to be solved is

∇2f = g,

∂f

∂n
= 0 on ∂C0 = P0 ∪P1,

 (A 1)

where n is the outward unit vector normal to the wall. The general solution of this
Neumann problem is given by

f(x) = −
∫
C0

g(x′)
4π‖x′ − x‖ dV (x′)−

∫
∂C0

f(x′)
∂

∂n′

(
1

4π‖x′ − x‖
)

dS(x′). (A 2)

If the Green function of the channel, which satisfies the Neumann boundary condition
on P0 and P1, is used, the surface integral vanishes, leading to

f(x) =

∫
C0

g(x′)GC0
(x, x′) dV (x′). (A 3)

Unfortunately, no simple analytical expression for GC0
exists except in the (kx, kz)

wavenumber space. Therefore, it is necessary to derive an approximated form of the
Green function in the physical space.

We denote H(x, x′) as the approximate Green function which renders the surface
term in (A 2) negligibly small. Chou (1945) proposed letting H = GR3 , the free-space
Green function, but noted that it is only valid far from solid boundaries.

Let us consider the image channels C−1 and C1 shown in figure 15, which are
symmetrical to C0 with respect to P0 and P1, respectively. The ‘even’ extension g̃ of
g can be defined by g̃(x′0) = g̃(x′−1) = g̃(x′1) = g(x′0) for each point x′0 of the channel
C0, where the points x′−1 and x′1 are symmetrical to x′0 with respect to P0 and P1,
respectively.

Then, f̃, the extension of f, is a solution of a Neumann problem in C−1 ∪C0 ∪C1:

∇2f̃ = g̃,

∂f̃

∂n
= 0 on P−1 ∪P2.

 (A 4)
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The solution can be expressed as

f̃(x) = −
∫
C−1∪C0∪C1

g̃(x′)
4π‖x′ − x‖ dV (x′)−

∫
P2

∂

∂y′

(
1

4π‖x′ − x‖
)
f̃(x′) dS(x′)

+

∫
P−1

∂

∂y′

(
1

4π‖x′ − x‖
)
f̃(x′) dS(x′). (A 5)

By splitting the volume integral in (A 5) into integrals on C−1, C0 and C1, adding and
subtracting surface integrals on P0 and P1 and using the identities f̃(x′−1) = f̃(x′1) =
f(x′0) and g̃(x′−1) = g̃(x′1) = g(x′0) it can be easily shown that

f(x) =

∫
C0

g(x′0)
(
− 1

4π‖x′−1 − x‖ −
1

4π‖x′0 − x‖ −
1

4π‖x′1 − x‖
)

︸ ︷︷ ︸
H(x,x′0)

dV (x′0)

+

∫
∂C0

f(x′0)
∂

∂n′

(
− 1

4π‖x′−1 − x‖ −
1

4π‖x′0 − x‖ −
1

4π‖x′1 − x‖
)

dS(x′0). (A 6)

The surface integral in this expression can now be neglected. Indeed, the derivative
of H(x, x′0) is

∂

∂n′
H(x, x′0) = − (x′−1 − x) · n′

4π‖x′−1 − x‖3
+

(x′0 − x) · n′
4π‖x′0 − x‖3

− (x′1 − x) · n′
4π‖x′1 − x‖3

. (A 7)

On P0, since x′−1 = x′0, the sum of the first two terms is zero and the surface integral
only involves the contribution of the image x′1. To estimate its magnitude, we choose
a function f such that f(x, 0, z) = f0 χ(x, z), where χ(x, z) = 1 for x2 + z2 6 R2 and 0
elsewhere. The contribution fP0

of the surface integral on P0 is

fP0
= 1

2
f0

(
1− 2− y

(R2 + (2− y)2)1/2

)
, (A 8)

which takes the value

fP0
= f0

(
1
2
− 1

(R2 + 22)1/2

)
(A 9)

at y = 0. This value can be very small, depending on R.

In the case of the redistribution term, the two-point correlation ui(x)∂p/∂xj(x′) +

uj(x)∂p/∂xi(x′) in the surface term can be approximated by(
ui(x)

∂p

∂xj
(x) + uj(x)

∂p

∂xi
(x)

)
χ(x′ − x, z′ − z). (A 10)

The radius R defining χ is the non-dimensional correlation length scale L/2h, where
h is the half-width of the channel. If the φ∗22 component is considered, the correlation
length scale at the wall, evaluated from DNS data, is at most L+ = 25 (in the
streamwise direction), as can be seen in figure 12. With this value, R ≈ 0.02. The
Taylor series expansion with respect to R of the surface contribution fP0

= φ∗ijP0
,

given by (A 9), leads to

φ∗ijP0
∼ L2

64h2
φ∗ij ≈ 3× 10−5φ∗ij . (A 11)

This result shows that the present approximation of the Green function is much better
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than GR3 , which gives a factor of 0.5. Moreover, the boundary condition of f at the
wall will be much more correctly imposed with this approximation.

One could think that by the same argument, adding more and more image terms
would lead to the vanishing of the surface integral and that the Green function of
the channel is exactly the sum of an infinite number of image terms. Unfortunately,
this sum is not convergent so the exact Green function cannot be derived this way.

Appendix B. Consequence of symmetrizing the correlation function
The purpose of this Appendix is to provide a formal proof that the value of the

integral (the redistribution term in our case) is increased when the correlation function
is symmetrized.

Let us define functions g(x) (corresponding to Ψ (x, x) in this paper) and h(x, x′)
(f(x, x′)GΩ(x, x′) in this paper), and the integral

I(x) =

∫
Ω

g(x′)h(x, x′) dV (x′) (B 1)

which corresponds to φ∗ij(x). If x and z are the homogeneous directions, h(x, x′) =
h(x′ − x, y, y′, z′ − z) and g(x) = g(y). The integral I(x) then reduces to

I(y) =

∫
y

g(y′)H(y, y′) dy′, (B 2)

where H(y, y′) =
∫
x

∫
z
h(x′ − x, y, y′, z′ − z) dx′ dz′.

Two assumptions, consistent with the behaviour of the correlation functions in this
paper, are used in the following derivation: H(y, y′) decreases faster when y′ < y than
when y′ > y (H(y, y+ s) > H(y, y− s) for s > 0), and g(y) decreases when y increases.

Let us now define H∗(y, y′) by symmetrizing H(y, y′):

H∗(y, y + s) =
H(y, y − s) +H(y, y + s)

2
(B 3)

for all s. The integral I∗(y) is simply defined by replacing H(y, y′) by H∗(y, y′) in (B 2).
The objective now is to show that I∗(y)− I(y) > 0.

The function I∗(y) can be split into its left and right parts:

I∗(y) =

∫
s>0

[g(y − s)H∗(y, y − s) + g(y + s)H∗(y, y + s)] ds. (B 4)

Using the definition of H∗(y, y′), this can be written as

I∗(y) =

∫
s>0

[g(y − s) + g(y + s)]
H(y, y − s) +H(y, y + s)

2
ds. (B 5)

On the other hand, I(y) can be split into left and right parts as well:

I(y) =

∫
s>0

[g(y − s)H(y, y − s) + g(y + s)H(y, y + s)] ds, (B 6)

and thus, a combination of (B 5) and (B 6) yields

I∗(y)− I(y) =
1

2

∫
s>0

[g(y − s)− g(y + s)][H(y, y + s)−H(y, y − s)] ds. (B 7)

Based on the assumptions about g(y) and H(y, y′) made earlier, both terms in the
square brackets are positives and, accordingly, I∗(y)− I(y) > 0.
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Figure 16. Example of mapping a [0, 1]× [0, 1] domain to itself. Lines drawn in (b)
correspond to those in (a).

Thus, the replacement of the correlation function by a symmetrical function in-
creases the redistribution term.

Appendix C. Examples of space transformations
The space transformation used in § 5.1 is difficult to visualize in complex geom-

etries. Furthermore, it is not straightforward to understand its use to solve a differ-
ential equation, for instance a Neumann problem, in a three-dimensional geometry.
This Appendix aims to clarify these issues, by examples in one- or two-dimensional
domains.

Figure 16 shows an example of such a transformation α in the domain [0, 1]× [0, 1].
The transformation is defined by:

α1(x, y) = sin1/2[ 1
2
π(0.05 + 0.9y)x]/ sin1/2[ 1

2
π(0.05 + 0.9y)],

α2(x, y) = sin2[ 1
2
π(0.95− 0.9x)y]/ sin2[ 1

2
π(0.95− 0.9x)].

}
(C 1)

This example may appear quite complicated, but it was chosen in such a way that
the distortion of the domain is quite severe. Figure 16 shows that the boundaries of
the domain can be preserved even when no point of the domain is invariant, except
for the corners.

However, the Green function of the domain [0, 1]× [0, 1] can only be obtained by
applying a Fourier series expansion in one direction, which increases significantly the
complexity of the analytic development. Therefore, in the remainder of this Appendix,
we will consider the case of a one-dimensional Dirichlet problem:

∇2f(x) = g(x) = x, f(0) = 1, f(1) = 0. (C 2)

The Green function for the Dirichlet problem is

G(x, x′) = (x− 1)x′ for x′ < x,

G(x, x′) = (x′ − 1)x for x < x′.

}
(C 3)

The solution of (C 2) is then given by

f(x) =

∫ x

0

(x− 1)x′2 dx′ +
∫ 1

x

x(x′ − 1)x′ dx′ + 1− x, (C 4)
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and, finally,
f(x) = 1

6
x3 − 7

6
x+ 1. (C 5)

The above is the direct way of solving (C 2) by means of the Green function
(obviously not the simplest way to solve this problem). The problem can also be
solved by introducing first a space transformation α. For instance, let us consider the
transformation

α :

{
[0, 1] −→ [0, 1]

x 7−→ x1/2,
(C 6)

and the functions ϕ = f ◦ α−1 and ζ = ∂2ϕ/∂x2. Now, ζ, the Laplacian of ϕ, can be
expressed as

ζ(x) =

(
∂2f

∂x2
◦ α−1

)(
∂α−1

∂x

)2

+

(
∂f

∂x
◦ α−1

)(
∂2α−1

∂x2

)
, (C 7)

which yields
ζ(x) = 5x4 − 7

3
. (C 8)

The function ϕ is then the solution of the Dirichlet problem in [0, 1]:

∇2ϕ(x) = ζ(x) = 5x4 − 7
3
, ϕ(0) = 1, ϕ(1) = 0. (C 9)

Since the domain has been preserved, the Green function is the same, and the solution
of (C 9) is

ϕ(x) =

∫ x

0

(x− 1)x′(5x′4 − 7
3
) dx′ +

∫ 1

x

x(x′ − 1)(5x′4 − 7
3
) dx′ + 1− x, (C 10)

which leads to
ϕ(x) = 1

6
x6 − 7

6
x2 + 1. (C 11)

Finally, one can return to the original space using f = ϕ ◦ α, which yields (C 5) again.
This simple example shows how the functions are transformed and how one can

obtain the same result by working in the transformed space. In principle, this method
can be extended to multi-dimensional spaces. In complex geometries the method is
obviously still valid, but the Green function cannot be determined analytically.
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